定义域中的每一个元素,与其在值域中对应的元素,组成一个数对,由二维坐标系中的一个点来表示。所有这样的点形成了函数的图象。图象能直观地表现函数的对应关系,大家应该熟悉幂函数、指数函数、对数函数的基本图象。要求高的同学可以进一步掌握图象的平移、反射、旋转。
奇函数和偶函数的定义不说了,要注意的是奇函数和偶函数的定义域必须关于原点对称。F(X)=X,X为任意实数 是奇函数,如果限定X属于[-3,5],那函数就不是奇函数了。
反函数。如果集合A中的每一个元素,按照某种对应关系,在集合B中都有唯一的对应元素;而B中的每一个元素,在A中都有唯一的元素与之对应。则A到B的对应关系是可逆的,A到B的对应关系是原函数,B到A的对应关系是反函数。对于连续的函数来说,只有绝对增函数或绝对减函数,才存在反函数,否则A中必有两个元素,在B中对应同一元素。对于不连续的函数则没有上述限制。
复合函数。集合A中的元素,按一种函数对应到集合B,B中的相应元素,再按另一种函数对应到集合C,最后形成集合A到集合C的对应关系,称为复合函数。
3、数列的概念
数列是一种特殊的函数,其定义域为全体或部分自然数。数列的通项公式A(N)就是一个函数,求出通项公式,等于求出了数列的任一项。数列的前N项和S(N)(N=1,2,。。。)构成了一个新的数列,知道S(N)的公式,通过A(1)=S(1),A(N)=S(N)-S(N-1)就能求出原数列的通项公式。
MBA数学主要考察等差数列和等比数列。有些数列不是等差数列或等比数列,但经过改造后可构造出等差数列或等比数列,如A(1)=1,A(N+1)=2A(N)+1。这个数列的每一项都加上1,就成为等比数列了,通项公式为2^N,因此原数列通项公式为:A(N)=2^N-1