备战2012年MBA联考数学零起点(4)

2011年05月17日09:27      中国教育在线             _COUNT_人评论
备战2012年MBA联考数学零起点备战2012年MBA联考数学零起点

  其他常见的数列包括A(N)=N^3, A(N)=N!/(N-K)!,A(N)=1/[N(N-1)]等,都有相应的办法能处理。

  4、排列、组合、概率的概念

  排列、组合、概率都与集合密切相关。排列和组合都是求集合元素的个数,概率是求子集元素个数与全集元素个数的比值。

  以最常见的全排列为例,用S(A)表示集合A的元素个数。用1、2、3、4、5、6、7、8、9组成数字不重复的九位数,则每一个九位数都是集合A的一个元素,集合A中共有9!个元素,即S(A)=9!

  如果集合A可以分为若干个不相交的子集,则A的元素等于各子集元素之和。把A分成各子集,可以把复杂的问题化为若干简单的问题分别解决,但我们要详细分析各子集之间是否确无公共元素,否则会重复计算。

  集合的对应关系

  两个集合之间存在对应关系(以前学的函数的概念就是集合的对应关系)。如果集合A与集合B存在一一对应的关系,则S(A)=S(B)。如果集合B中每个元素对应集合A中N个元素,则集合A的元素个数是B的N倍(严格的定义是把集合A分为若干个子集,各子集没有共同元素,且每个子集元素个数为N,这时子集成为集合A的元素,而B的元素与A的子集有一一对应的关系,则S(A)=S(B)*N

  例如:从1、2、3、4、5、6、7、8、9中任取六个数,问能组成多少个数字不重复的六位数。

  集合A为数字不重复的九位数的集合,S(A)=9!

  集合B为数字不重复的六位数的集合。

  把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3!

  这时集合B的元素与A的子集存在一一对应关系,则

  S(A)=S(B)*3!

  S(B)=9!/3!




相关报道:2012年MBA联考英语单词特殊记忆法 2011-05-12 16:06:00
          MBA联考写作真题与参考答案论证解释 2011-05-09 16:24:31
          2012年MBA联考英语作文写作演练与点评 2011-05-06 08:58:11
          打有准备的战 2012年MBA联考复习规划 2011-05-05 09:28:49


 

网友评论 更多评论

已有 _COUNT_位网友发表评论  
登录名: 密码:

关于 MBA联考 我来说两句

爱问(iAsk.com)